
ACM Reference Format

Hou, Q., Zhou, K. 2011. A Shading Reuse Method for Effi cient Micropolygon Ray Tracing.
ACM Trans. Graph. 30, 6, Article 151 (December 2011), 7 pages. DOI = 10.1145/2024156.2024185
http://doi.acm.org/10.1145/2024156.2024185.

Copyright Notice

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2011 ACM 0730-0301/2011/12-ART151 $10.00 DOI 10.1145/2024156.2024185
http://doi.acm.org/10.1145/2024156.2024185

A Shading Reuse Method for Efficient Micropolygon Ray Tracing

Qiming Hou Kun Zhou

State Key Lab of CAD&CG, Zhejiang University∗

Abstract

We present a shading reuse method for micropolygon ray trac-
ing. Unlike previous shading reuse methods that require an ex-
plicit object-to-image space mapping for shading density estima-
tion or shading accuracy, our method performs shading density con-
trol and actual shading reuse in different spaces with uncorrelated
criterions. Specifically, we generate the shading points by shoot-
ing a user-controlled number of shading rays from the image space,
while the evaluated shading values are assigned to antialiasing sam-
ples through object-space nearest neighbor searches. Shading sam-
ples are generated in separate layers corresponding to first bounce
ray paths to reduce spurious reuse from very different ray paths.
This method eliminates the necessity of an explicit object-to-image
space mapping, enabling the elegant handling of ray tracing effects
such as reflection and refraction. The overhead of our shading reuse
operations is minimized by a highly parallel implementation on the
GPU. Compared to the state-of-the-art micropolygon ray tracing al-
gorithm, our method is able to reduce the required shading evalua-
tions by an order of magnitude and achieve significant performance
gains.

Keywords: micropolygon, GPU, Reyes, ray tracing

Links: DL PDF

1 Introduction

Shading is typically the performance bottleneck in cinematic-
quality rendering, which is often based on the Reyes architecture
and uses micropolygons to represent high order surfaces or highly
detailed objects [Cook et al. 1987]. In order to reduce shading costs,
state-of-the-art micropolygon renderers (e.g., Pixar’s RenderMan)
perform shading computation on micropolygon vertices, and reuse
the shading values to evaluate the color of each visibility sample (or
antialiasing sample) and composite the final image. Such a shad-
ing reuse strategy enables a shading rate significantly lower than
the visibility sampling rate, which is vital for efficient high-quality
rendering where extremely high supersampling of visibility is nec-
essary, especially when rendering defocus and motion blur.

Existing shading reuse methods for micropolygon rendering are
primarily designed for rasterization based pipelines. Ray trac-
ing effects such as reflection and refraction are typically consid-
ered as a part of shading in such methods. Consequently, all re-
flected/refracted samples have to be shaded, incurring significant
overhead. As ray tracing achieves more significance in modern

∗Email: hqm03ster@gmail.com, kunzhou@acm.org

Figure 1: An animated scene rendered with motion blur and re-
flection. This scene contains 1.56M primitives and is rendered with
2 reflective bounces at 1920 × 1080 resolution and 11 × 11 su-
persampling. The total render time is 289 seconds. On average
only 3.48 shading evaluations are performed for each pixel and are
reused for other samples.

high-quality rendering [Parker et al. 2010], this may become a ma-
jor obstacle in future applications.

In this paper, we introduce a simple but effective method to reuse
shading evaluations for efficient micropolygon ray tracing. Com-
pared to the state-of-the-art micropolygon ray tracing algorithm,
our method is able to reduce the required shading evaluations by
an order of magnitude and achieve significant performance gains.

1.1 Related Work

Extensive research has been done on micropolygon rendering and
ray tracing.

Researchers have explored efficient parallel implementations of mi-
cropolygon rendering on GPUs [Wexler et al. 2005; Patney and
Owens 2008; Zhou et al. 2009; Hou et al. 2010]. In particular,
Hou et al. [2010] introduced a GPU-based micropolygon ray trac-
ing algorithm. They demonstrated that for high-quality defocus and
motion blur ray tracing can greatly outperform rasterization meth-
ods. In their method, ray tracing is only used for visibility sampling
and shading is still performed on micropolygon vertices. Another
branch of research also seeks to accelerate micropolygon rendering
using GPUs [Fisher et al. 2009; Fatahalian et al. 2009; Fatahalian
et al. 2010; Ragan-Kelley et al. 2011; Burns et al. 2010]. The key
difference between our work and theirs is that while they propose
new GPU architecture designs that support real-time micropolygon
rasterization, we aim to accelerate high-quality, off-line ray tracing
using software approaches on current GPU hardware.

A majority of micropolygon rendering algorithms are designed to
reuse the expensive shading computations across multiple visibility
samples, assuming that shading is continuous and does not vary sig-
nificantly across adjacent visibility samples. Existing shading reuse
methods can be categorized into object-space methods [Cook et al.
1987; Burns et al. 2010] and image-space methods [Ragan-Kelley
et al. 2011]. In [Cook et al. 1987], shading is performed on microp-
olygon vertices and reused within the same micropolygon. Burns
et al. [2010] define a shading grid based on a priori shading density
estimation, while shading values are evaluated lazily after visibility

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

http://doi.acm.org/10.1145/2024156.2024185
http://portal.acm.org/ft_gateway.cfm?id=2024185&type=pdf

is resolved and reused within the same shading grid cell. Decoupled
sampling [Ragan-Kelley et al. 2011] implicitly partitions antialias-
ing samples into equivalent classes using shading density control-
ling hash functions. Shading is reused within the same equivalent
class.

Stoll et al. [2006] introduced object-space shading reuse into a ray
tracing pipeline. They use ray derivatives [Igehy 1999] to control
shading computation rates. Specifically, they conservatively dis-
cretize the minimum width of the derivative beam cross section
into a few predefined object space tessellation grids. Shading is
then computed for all tessellation grids hit by at least one ray. As
noted in their paper, such an approach may result in considerable
over-shading when there are highly anisotropic derivatives or sig-
nificant over-tessellation. To avoid such reliance on ray derivative
behaviors, our method controls shading reuse using nearest neigh-
bor searches, which are independent of tessellation and automati-
cally adapt to anisotropy.

1.2 Challenge and Contribution

The main challenge in generalizing existing shading reuse methods
to ray tracing is that ray tracing complicates the object-to-image
space mapping. Such a mapping is inherently required for shading
reuse as the ideal shading evaluation density is defined in the im-
age space while the shading continuity assumption is only valid in
the object space. Object-space methods such as [Burns et al. 2010]
reuse shading values based on object-space proximities and rely on
the image-space polygon size to control the shading evaluation den-
sity. In a rasterization-based pipeline, the size can be directly com-
puted by simply projecting polygons to the image space. However,
ray tracing may introduce arbitrary distortion and the image-space
polygon size is no longer practical to compute. Image-space meth-
ods (e.g., [Ragan-Kelley et al. 2011]) reuse shading values based
on image-space proximities and rely on a continuous object-image
space mapping for shading accuracy. This assumption is trivially
valid for direct rasterization. Defocus and motion blur effects can
be handled by using the non-blurred image space for the shading
reuse purpose. However, the same cannot be done for ray trac-
ing effects like glossy reflection, which introduce a discontinuous
object-image space mapping that cannot be worked around.

We propose to perform shading density control and actual shading
reuse in different spaces with uncorrelated criterions. Specifically,
we generate the shading points by shooting a user-controlled num-
ber of shading rays from the image space, while the evaluated shad-
ing values are assigned to antialiasing samples through object-space
nearest neighbor searches. This method eliminates the necessity
of an explicit object-to-image space mapping, enabling the elegant
handling of ray tracing effects.

The nearest neighbor search employed in our method may cause
significant performance overhead, which should be minimized to
maintain the high efficiency of shading reuse. Observing the fact
that micropolygons are often generated by dicing high-level para-
metric primitives, we design an algorithm to convert the 3D object-
space nearest neighbor search to a 2D parametric-space search, and
facilitate an accurate and efficient nearest neighbor search in shad-
ing reuse.

We further develop a highly parallel implementation of the shad-
ing reuse method on the GPU. We show that by replacing vertex
shading with our method in a GPU-based micropolygon ray tracer,
shading costs can be greatly reduced by 17× and end-to-end render
time can be improved by 3.5×. The quality and performance of our
method was evaluated on a variety of complex scenes.

Listing 1 Pseudocode of our shading reuse method

1 //Generate and shade seeding rays

2 shading_rays = generateShadingRays(n*shading_rate)

3 shading_samples = pathTraceAll(shading_rays)

4 shade(shading_samples)

5 //Trace antialiasing rays and reuse shading

6 aa_rays = generateAntialiasRays(n*m)

7 aa_samples = pathTraceAll(aa_rays)

8 failed = new List

9 for each s in aa_samples

10 s.shading = shading_samples.findNearest(s)

11 if s.shading == NOT_FOUND:

12 failed.add(s)

13 //Shade failure samples with image space reuse

14 cache = new Hash

15 for each s in failed

16 if cache.canReuseShadingAt(s):

17 s.shading = cache.fetch(s)

18 else

19 shade(s)

20 cache.add(s)

21 //Filter all samples to produce the final image

22 final_image = downSampleAndFilter(aa_samples)

2 Shading Reuse Method

Our shading reuse method works as the top level rendering loop of
a ray tracer. For an image rendered at the resolution of n pixels
with m× supersampling, Listing 1 shows the pseudocode of our
method.

The method mainly consists of four steps. First, a certain num-
ber of shading rays are generated uniformly in the image space and
traced to get the shading samples, which are then shaded. Second,
antialiasing rays are generated and traced to obtain the antialiasing
samples. For each antialiasing sample, the nearest reusable shading
sample is located and its shading value is assigned to the antialias-
ing sample. Third, for those antialiasing samples that cannot find
a reusable shading sample in the last step, a fall-back image-space
shading reuse method is used to reshade these samples. This pro-
cess is repeated for several layers of samples to separate potentially
different shading ray paths. Finally, all antialiasing samples are fil-
tered to produce the final image.

2.1 Sample Generation and Shading Formulation

Our method controls the shading density through shading ray gen-
eration. The user specifies the number of required shading evalua-
tions for each pixel, i.e., shading_rate. As illustrated in List-
ing 1, lines 2-4, our method uses conventional jittered grid sampling
[Cook et al. 1984] to generate n*shading_rate shading rays as
uniformly as possible in the image space and shades the hit points
of these rays. Antialiasing rays (n*m) are generated in the same
way, as shown in line 6.

Lines 3 and 7 in Listing 1 use path tracing to trace the generated
rays. A key difference between the path tracing here and tradi-
tional path tracing is that we limit our path tracer to Whitted-style
[Whitted 1980] and highly glossy effects by pruning the ray path.
Listing 2 is the pseudocode of our path tracer. Note that it returns
an attenuation color and a hit point for each ray path, instead of just
a color value as in traditional path tracing. A ray path’s final color is
obtained by executing a programmable shader on the hit point and
multiplying the shading result with the attenuation color. Shading
reuse is only applied to the shading results, and attenuation colors
are always evaluated at supersampled resolution.

151:2 • Q. Hou et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

Listing 2 Pseudocode of our path tracing routine

1 function pathTrace(color, ray)

2 hitpoint = rayTrace(ray)

3 effect = randomEffect(hitpoint.shader)

4 if effect.isWhittedOrGlossy():

5 //Only Whitted/glossy bounces are traced

6 ray_out = randomRay(hitpoint, effect)

7 color *= brdf(hitpoint, ray, ray_out)

8 return pathTrace(color, ray_out)

9 else

10 //In addition to an attenuation color, a

11 //hitpoint is also returned for shading.

12 return (color, hitpoint)

(a) 3D space (b) Parametric space

Figure 2: A Z-shaped primitive with 3 micropolygons. Points A, B,
C have reusable shading values. We need to find the correct shading
point (namely A) for point P and reuse A’s shading value.

2.2 Nearest Neighbor Based Shading Reuse

Our method makes use of an object-space nearest neighbor search
algorithm to find the most accurate reusable shading value for every
antialiasing sample. The algorithm is carefully designed to exploit
micropolygon properties to facilitate an accurate and efficient near-
est neighbor search.

Note that micropolygons are typically generated by dicing high-
level parametric primitives like a subdivision surface. In a microp-
olygon based ray tracer, any ray hit point can be uniquely rep-
resented by a tuple (i, u, v), where i is an integer primitive ID
and (u, v) is the hit point’s parametric-space coordinate within the
primitive. This allows us to perform the nearest neighbor search
within each individual primitive’s parametric space. Our algorithm
thus constructs a 2D kd-tree for the shading samples in each primi-
tive as the search acceleration structure.

Our parametric-space search algorithm has several advantages.
First, by limiting shading reuse candidates to the same primitive
of the antialiasing sample, the risk of reusing shading from a dif-
ferent object or a different shader is trivially eliminated. Second,
confining the nearest neighbor search within the same primitive
can reduce the number of search candidates by orders of magni-
tude, resulting in a considerable performance gain. Finally, our
parametric-space search algorithm remains robust in handling dis-
placement mapped or highly curved primitives. For example, the
scene shown in Fig. 5 contains a displacement mapped object.

Fig. 2 illustrates the robustness of our parametric-space search.
Consider an extreme example of a Z-shaped primitive with three
micropolygons (Fig. 2(a)). Only three shading rays hit the primi-
tive at points A, B, C correspondingly. We need to find the nearest
shading point for point P . Due to ambient occlusion, the shading
values at B and C are significantly darker than A and should not be
reused for P . However, spatially both B and C are closer to P than
A. While B can be excluded by considering normal directions, C
and A have an identical normal. It is thus difficult, if not impossi-
ble, to exclude C using only geometric information. On the other
hand, in the parametric space the nearest neighbor search is able to
find A for P correctly, as illustrated in Fig. 2(b).

Our nearest neighbor search ignores view direction. In our pipeline,
highly view dependent effects like specular highlights are typically

computed during the path tracing process described in Section 2.1,
which is not a part of shading reuse. In such case, shading reuse
takes effect by reusing the diffuse component of surfaces reflected
by the highlights, instead of the highlights themselves.

2.3 Handling Nearest Neighbor Failures

Note that it is possible for the shading rays to entirely miss some
small or thin primitives in the scene. For antialiasing samples on
such primitives, the subsequent nearest neighbor search would fail
to find any reusable shading value. As shown in Listing 1, lines 11-
20, we collect such samples into a dedicated list and reshade them
in a later pass. The hash-based technique in decoupled sampling
[Ragan-Kelley et al. 2011] is employed to reuse shading within the
reshaded samples. Here shading is reused and only reused among
samples that are from the same primitive and ultimately contribute
to the same pixel.

A direct consequence is that our approach falls back to decoupled
shading for subpixel primitives such as furs and particles. While
this fall back results in over-shading, it effectively reduces arti-
facts. We plan to investigate dedicated algorithms for rendering
such primitives and combine the results into either shading samples
or visibility samples.

2.4 Scene Layer Separation

Prior to entering the rendering loop in Listing 1, the scene is sepa-
rated into several layers based on the first ray bounce types. Specif-
ically, a layer is rendered for each type of ray bounce, including
but not limited to direct absorption, reflection and refraction. For
example, Fig. 3(a-d) illustrates a scene rendered in three layers.
Our entire rendering loop is executed once for each layer, confining
shading reuse within each individual bounce type.

Scene layer separation based on bounce types serves two purposes.
First, it reduces path tracing noise. During the first bounce, the
separation eliminates the stochastic decision on which ray type to
follow. Therefore, all types of first bounce ray paths are combined
using precisely evaluated weights instead of weights implicitly ap-
proximated through Monte Carlo integration. This eliminates the
noisy artifacts related to ray type combination. Second, it allevi-
ates the risk of reusing the shading value from a shading sample
with a different texture filter size. Note that the same primitive may
be visible in multiple layers. Each layer may have a different de-
gree of magnification and distortion, resulting in different texture
filter sizes. This is also true if there are multiple ray paths to the
same point within the same layer, but we find it usually reduces the
problem in practice. In some cases, more layers may need to be
added to further reduce spurious shading reuse. Without the layer
separation, the parametric-space nearest neighbor of an antialiasing
sample may come from an entirely different layer with a different
texture filter size, resulting in blurry or aliasing artifacts. Fig. 3(e)
and (f) compare the rendering results with and without layer sepa-
ration.

When a primitive is visible to two or more second bounce ray paths,
blurry or aliasing artifacts may still occur in our pipeline. Fig. 4 il-
lustrates such a situation. Our method produces Fig. 4(b), which
contains a few black dots produced by reusing shading values eval-
uated from excessively large texture filters in another ray path.

Our current layer separation mechanism aims to alleviate the prob-
lem by partially separating ray paths prior to shading reuse. Sep-
arating first bounce effects eliminates erroneous shading reuses
between directly visible objects and their immediate reflec-
tions/refractions, which is the most commonly occurring case in
practice. Straightforward generalization to multiple ray bounces

A Shading Reuse Method for Efficient Micropolygon Ray Tracing • 151:3

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

(a) Direct hit (b) Reflection

(c) Refraction (d) Combined

(e) With separation (f) Without separation

Figure 3: Scene layer separation based on first ray bounce types.
The scene in (d) is rendered as the three layers shown in (a), (b),
(c) respectively. (d) is generated by adding up (a), (b), and (c). (e)
and (f) are zoom-ins of the marked region in (d).

suffers from combinatorial explosion, but the ray paths may be
pruned using attenuation colors to yield a reasonable bound. This
is a potential direction for future investigation.

With extensive experiments, we found that the problem can be
fixed to produce Fig. 4(c) in a more robust manner by using
in nearest neighbor searches a non-Euclidean distance metric
√

|pa − pb|2 + c| log2(ra/rb)|
2 (r2a + r2b). Here a and b are two

sample points, pa is the parametric space coordinate vector of a, ra
is the average length of parametric coordinate derivatives at a, and
c is a constant that requires manual tweaking. On the other hand,
the non-linear distance metric increases the nearest neighbor query
cost significantly, causing a 3.2× slowdown of end-to-end render
time for Fig. 4. Therefore, considerable effort is still required to fit
this metric for practical use.

3 GPU Implementation

We developed a highly parallel implementation of our shading reuse
method on current GPUs. In the following, we discuss several non-
trivial GPU implementation details that are not directly related to
our core pipeline design. Listing 3 illustrates the pseudocode of the
implementation.

3.1 Memory Management and Scalability

One difference from past shading reuse techniques is that our
method requires storing all shading samples. To achieve scalability
with respect to image size, a top level rendering loop is wrapped
around Listing 3 to first split the image into buckets such that the
shading reuse data structure approximately consumes one half of
the available GPU memory. Listing 3 is then executed on each
bucket sequentially, which partitions antialiasing samples in each
bucket into fixed-size batches and processes the batches one by one.
Both the bucket size and the batch size are computed by dividing
one half of the available GPU memory size by the corresponding

(a) Complete scene (new metric)

(b) Our method (4.75s)

(c) New metric (15.3s)

Figure 4: A scene illustrating shading reuse errors. The mirror
reflects both the ground and the glass ball. Shading may be er-
roneously reused between directly reflected hit points and points
reached through the glass ball, which results in a few black spots in
(b). The image is rendered at 720× 480 with 13× 13 antialiasing.
The torus on the ground has a rough reflection component, which is
handled correctly in our approach, as expected.

maximal per-sample memory consumption.

As the antialiasing samples in each batch are discarded once the
batch finishes processing, it is no longer possible to simply get the
final image by filtering all samples. Therefore, we implement fil-
tering using forward splatting. Specifically, for each antialiasing
sample we splat a filter-weighted disk with the sample’s color onto
the final image using additive blending. This allows samples to be
generated in arbitrary order, which is also useful for failure sample
handling (see Section 3.3).

3.2 En-masse KD-Tree Construction

The nearest neighbor search described in Section 2.2 requires con-
structing a 2D kd-tree for each individual primitive. The size of
each kd-tree varies from one node to millions of nodes, and hun-
dreds to millions of kd-trees have to be constructed simultaneously.
To utilize the GPU efficiently, the construction algorithm has to
be parallelized both within and across kd-trees. Fortunately, state-
of-the-art GPU kd-tree construction algorithms (e.g., [Zhou et al.
2008]) only rely on nodes and points as parallelization units. We
make two extensions to Zhou et al.’s method to allow multiple kd-
trees to be built simultaneously in parallel. First, we replace their
initial node with a list of root nodes for all our kd-trees. The root
node list is generated on the GPU from the list of primitives that are
hit by at least one shading ray. Second, we replace all their scan, re-
duce and sort parallel primitives with the corresponding segmented
version to isolate operations in individual trees. Specifically, we re-
place reductions with segmented reductions, scans with segmented
scans, and for sorts we modify the comparison functions to compare
the tree ID before comparing the original sort key.

3.3 Failure Sample Handling

For efficient GPU utilization, failure samples are collected across
antialiasing batches and processed in separate batches. All sam-
ples in a failure sample batch are discarded once the patch finishes
processing.

The failure sample handling algorithm in Section 2.3 is parallelized
within each individual failure sample batch. Specifically, instead
of sequentially enumerating the samples while maintaining a hash
table, we first sort all samples by their respective hash values. Then
each sample’s hash is compared with its previous sample. If the
hashes are different, the sample is shaded. Otherwise, the previous
sample’s shading value is reused in a subsequent parallel loop. This
is illustrated in Listing 3, lines 23-37.

151:4 • Q. Hou et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

3.4 Ray Tracing Implementation

Our shading reuse method has been integrated into an out-of-core
GPU ray tracing system. The reason for using an out-of-core ray
tracer is to bound the peak memory consumption during ray trac-
ing and simplify the bucket/batch size computation in Section 3.1.
Fig. 1 and Fig. 7 are two example scenes that require significant
out-of-core swapping to handle.

The view-dependent dicing scheme in Reyes does not work well
with the extensive ray tracing in our system. Our micropolygon dic-
ing rate is calculated based on the world-space edge length rather
than the projected edge length as in Reyes. The user specifies a
target edge length for each object and the dicer generates microp-
olygons approximately of the target world-space edge length.

We trace ray differentials to provide basic derivatives in the form
of d/dx, d/dy, where x and y are the image space coordinates. Tan-
gent directions are interpolated from precomputed values on poly-
gon/patch vertices. Currently we do not support systematic com-
putation of arbitrary derivatives. A possible solution is to make all
shader functions compute the derivatives of their output, and opti-
mize out unnecessary ones in the shader compiler.

4 Experimental Results

We have implemented the proposed method in a micropolygon
ray tracing system and evaluated its quality and performance on
a variety of scenes. All performance-wise significant steps in our
method run on the GPU and all data are measured on an Intel
Core i5 2.67GHz CPU (4GB) with an NVIDIA GeForce 470 GPU
(1280MB). All scenes are rendered with ambient occlusion and soft
shadows, which are processed as a part of shading and reused. Our
shading density is set to 2 shading evaluations per pixel per layer.
The actual shading rate is smaller than this number because pixels
that do not have a certain type of first bounce effect are not shaded
in the corresponding layer.

Table 1 summarizes the performance statistics of our method on
all test scenes. As illustrated, our method stays at a controlled and
small shading evaluation density per pixel. In all scenes except
Fig. 7, only a small fraction of samples fail the nearest neighbor
search and are reshaded. Our shading reuse may consume a con-
siderable portion of the render time, especially when significant re-
flection/refraction effects are rendered at a high antialiasing rate.
However, such cost is still small compared to the saved shading
cost, as demonstrated in the car scene comparison.

A side benefit of our method is that micropolygons do not have to
be diced as densely as in Reyes because the micropolygon size is no
longer correlated with the shading rate. Specifically, our renderer
does not dice non-displaced polygons at all. In addition, instanced
primitives only have to be diced once and the micropolygons can
be reused for all instances. For example, in Fig. 7, significantly less
micropolygons were diced than the total number of primitives.

Fig. 5 is a test scene illustrating a variety of effects that our shading
reuse method can handle. The main effects in this scene include
defocus, a magnifying glass, a rough glass panel, a displacement
mapped object and a high frequency text background. In the follow-
ing we will discuss how our method compares to existing shading
reuse methods in handling these effects.

Fig. 5(b-e) compares the reference solution, our method, and the
decoupled sampling approach [Ragan-Kelley et al. 2011]. Our re-
sult (c) is visually identical to the reference result (b), which is pro-
duced by shading all anti-aliasing samples, i.e., without any shad-
ing reuse. Fig. 5(d) is rendered with a straightforward extension
of Ragan-Kelley et al.’s method for ray tracing. Shading is reused

Listing 3 Pseudocode of our GPU implementation. The keyword
forall indicates a parallel loop.

1 final_image = new Image

2 for each layer in first_bounce_layers

3 //Generate and shade seeding rays

4 shading_rays = generateShadingRays(n*shading_rate)

5 shading_samples = pathTraceAll(shading_rays, layer)

6 shade(shading_samples)

7 shading_samples.buildKdTrees()

8 //Trace antialiasing rays and reuse shading

9 failed = new List

10 for each batch (p,p+batch_size) in (0,n*m-1)

11 aa_rays = generateAntialiasRays(p,p+batch_size)

12 aa_samples = pathTraceAll(aa_rays)

13 forall s in aa_samples

14 s.shading = shading_samples.findNearest(s)

15 if s.shading == NOT_FOUND:

16 //".add" is implemented using compaction

17 failed.add(s)

18 s.shading = 0

19 //Shade failure samples in independent batches

20 if failed.size()>GPU_UTILIZATION_THRESHOLD:

21 //Parallelized failure sample handling

22 //Sort failed samples by hash

23 failed.sortByHash()

24 //Shade the "head" samples

25 forall i in (0, failed.size()-1)

26 s = failed[i]

27 if canReuseBetween(s, failed[i-1]):

28 pass

29 else

30 shade(s)

31 //Reuse shading at other samples

32 forall i in (0, failed.size()-1)

33 s = failed[i]

34 if canReuseBetween(s, failed[i-1]):

35 s.shading = failed[i-1].shading

36 final_image.splatSamples(failed)

37 failed.clear()

38 //Splat shaded samples to the final image

39 final_image.splatSamples(aa_samples)

40 delete aa_samples

41 delete aa_rays

across samples which belong to the same primitive and have the
same hash value under their standard decoupling mapping, which
computes the integer hash value of a sample by projecting it to
the image plane while disregarding defocus. Since this mapping
disregards the magnification and distortion caused by ray tracing,
it resulted in blocky artifacts when rendering magnified text. A
straightforward workaround to this problem is to modify the hash
function to map a sample to the image pixel it ultimately contributes
to instead of using a simple projection. This takes ray tracing into
consideration and solves the problem as illustrated in the first row
of Fig. 5(e). However, this approach relies on a continuous object-
to-image space mapping and fails to handle stochastic ray paths that
span multiple pixels like the rough glass shown in the second row
of Fig. 5(e).

Note that the artifacts in Fig. 5(d,e) only manifest when decoupled
shading is used on a multiple-pixel primitive. In contrast, our fail-
ure sample handling in Section 2.3 only falls back to decoupled
shading for subpixel primitives or subpixel portions of larger prim-
itives. Therefore, our approach is not affected by such artifacts even
when there are a significant number of failure samples like in Fig. 7.

A Shading Reuse Method for Efficient Micropolygon Ray Tracing • 151:5

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

Scene Resolution Sampling #prims #mpoly #shade #reshade #shade

#pixel
Treuse Tshading Ttotal

Fig. 1 1920× 1080 11× 11 1.56M 3.90M 6.89M 963K 3.48 4.79s 125s 289s

Fig. 5 1920× 1080 11× 11 4.4K 543K 6.44M 16.6K 3.26 6.17s 20.8s 57.9s

Fig. 6 1280× 720 23× 23 207K 208K 2.76M 75.25K 3.14 6.52s 8.85s 52.6s

Fig. 7 1920× 720 8× 8 296M 3.25M 9.78M 6.28M 7.41 1.67s 337s 409s

Table 1: Test data statistics. #prims is the total number of geometric primitives. #mpoly is the total number of micropolygons generated
during rendering. #shade is the total number of shading evaluations performed. #reshade is the total number of reshading evaluations for
samples that failed the nearest neighbor search. Note that #reshade is included in #shade. Treuse is the total time cost of shading reuse
operations, which primarily consists of kd-tree construction, nearest neighbor search and reshading sample collection. The cost of tracing
shading rays is not included in Treuse, since the rays are a subset of antialiasing rays and have to be traced regardless of shading reuse.
Tshading is the total shading time. Ttotal is the total rendering time.

(a) Complete scene (our result)

(b) Ground truth (c) Our method (d) DS (standard) (e) DS (modified)

Figure 5: A test scene rendered with our method (a), and zoom-
ins of the marked regions for the reference result (b), our result (c),
and two results generated by decoupled sampling based methods
(d,e). DS stands for decoupled sampling. The image is rendered
at 1920 × 1080, 11 × 11 supersampling with defocus effect and 2
bounces of reflection/refraction. The spiky orange object is modeled
using a displacement mapped sphere.

Compared to traditional Reyes shading which considers reflec-
tion/refraction effects as a part of shading, our main advantage is
that we are able to handle the combined effects of refraction and
defocus correctly. In Fig. 5(a), the camera is focused on the image
refracted by the magnifying glass. Therefore, the refracted image
appears clear even though the magnifying glass itself is blurred due
to defocus. This effect is impossible to produce using micropoly-
gon vertex shading as the refraction shader’s output would always
get blurred when resolving visibility.

Compared to the lazy shading framework proposed by Burns et
al. [2010], our method is able to achieve shading reuse without rely-
ing on explicit shading density estimation or relying on the Reyes-
style irregular splitting. For ray tracing effects such as the magnify-
ing glass in Fig. 5(a), it is difficult, if not impossible, to estimate the
required shading density on geometric primitives. If their shading
density estimation were used here as is, it would result in blocky ar-
tifacts similar to Fig. 5(d). Finally, even if an accurate density esti-
mation is provided, their method still requires excessively deep and
irregular Reyes splits to convert the density estimation into grids
with uniform shading rates.

Figure 6: The car scene from Hou et al. [2010] rendered by our
method. The image is rendered at 1280× 720 resolution with 23×
23 supersampling, the same as in the original paper.

We also compare our performance data with the GPU-based mi-
cropolygon ray tracer [Hou et al. 2010], which uses a shading reuse
strategy similar to Christensen et al. [2006]. Fig. 6 shows our ren-
dering of a car scene provided by Hou et al. [2010]. Their algo-
rithm took 185 seconds to finish rendering on our hardware. The
reflection effect on the car has to be handled as a part of shading.
To get antialiased reflection, the car has to be shaded at a shading
rate of 0.1 and about 49M micropolygons were shaded in total. Our
method is able to produce the same image quality in 53 seconds.
Compared to their algorithm, our method handles ray tracing el-
egantly and does not require their high shading rate for reflection
antialiasing. Only 2.76M hit points were shaded in this scene, re-
sulting in over 17× less shading evaluations and 3.5× higher over-
all rendering performance.

Fig. 7 is an extreme example with a tremendous number of prim-
itives. The large amount of small leaves result in a high failure
rate of our nearest neighbor search, where small primitives missed
by shading rays are seen by visibility rays, which leads to a con-
siderable amount of reshading. The fall-back image-space shading
reuse ensures our method does not degenerate to per-sample shad-
ing. The total number of shading evaluations is still less than 12%
of antialiasing samples.

5 Conclusion and Future Work

We have presented a novel shading reuse method for efficient mi-
cropolygon ray tracing. By handling ray tracing effects such as
reflection and refraction with antialiasing, we are able to greatly re-
duce shading evaluations and achieve significant performance gains
over the state-of-the-art micropolygon ray tracing algorithm. We
control the shading evaluation density through image space sam-
pling and use nearest neighbor search to maintain the accuracy of
shading reuse. Fine features missed by our initial shading are han-
dled using an image-space fall-back to ensure visual correctness.

151:6 • Q. Hou et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

Figure 7: A large procedurally generated scene. It consists of 296M primitives instanced from 888K base primitives. The scene is rendered
at 1920× 720 with 8× 8 supersampling and one bounce of glossy reflection. Some mild HDR glow is applied for visual effect.

Our shading reuse method still has two limitations. First, currently
we do not support per object shading rates. The reason is that we
generate shading rays in the image space to obtain hit points for
shading evaluation. All objects thus have the same shading rate. A
potential workaround is to trace additional shading rays from pixels
that overlap with objects with higher shading rates. Second, during
the nearest neighbor search we do not take into account motion blur
time, view ray direction, and texture filter size. Our preliminary
experiments have shown that simply incorporating them as extra
dimensions degrades the correlation between the distance metric
and shading continuity, which results in suboptimal shading reuse.
It would be an interesting future work direction to design a high
dimensional distance metric suitable for shading reuse.

Although our shading reuse method is designed for micropolygon
ray tracing, the only dependency on a micropolygon pipeline is the
primitive parametric space the pipeline provides. It is possible to
generalize our method to general ray tracing pipelines if an alterna-
tive distance metric with similar properties can be designed.

Acknowledgements

We would like to thank BlueArc Animation Studios for modeling
the battle scene (Fig. 1) and Steve Lin for proofreading the paper.
We are grateful to the anonymous reviewers for their valuable com-
ments. The project is partially supported by the NSF of China (No.
60825201).

References

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
lazy object-space shading architecture with decoupled sampling.
In Proceedings of HPG 2010, 19–28.

CHRISTENSEN, P., FONG, J., LAUR, D., AND BATALI, D. 2006.
Ray tracing for the movie ‘cars’. In Symposium on Interactive
Ray Tracing, 1–6.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan-
uary), 137–145.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987.
The Reyes image rendering architecture. SIGGRAPH Comput.
Graph. 21, 4 (August), 95–102.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-parallel ras-

terization of micropolygons with defocus and motion blur. In
Proceedings of HPG 2009, 59–68.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010.
Reducing shading on GPUs using quad-fragment merging. ACM
Trans. Graph. 29, 4 (July), 67:1–67:8.

FISHER, M., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. DiagSplit: paral-
lel, crack-free, adaptive tessellation for micropolygon rendering.
ACM Trans. Graph. 28, 5 (December), 150:1–150:10.

HOU, Q., QIN, H., LI, W., GUO, B., AND ZHOU, K. 2010.
Micropolygon ray tracing with defocus and motion blur. ACM
Trans. Graph. 29, 4 (July), 64:1–64:10.

IGEHY, H. 1999. Tracing ray differentials. In Proceedings of ACM
SIGGRAPH ’99, 179–186.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Op-
tiX: a general purpose ray tracing engine. ACM Trans. Graph.
29, 4 (July), 66:1–66:12.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Trans. Graph. 27, 5 (Decem-
ber), 143:1–143:8.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17.

STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHAS-
SAN, I. 2006. Razor: An architecture for dynamic multiresolu-
tion ray tracing. Tech. rep., The University of Texas at Austin.

WEXLER, D., GRITZ, L., ENDERTON, E., AND RICE, J. 2005.
GPU-accelerated high-quality hidden surface removal. In Pro-
ceedings of Graphics Hardware 2005, 7–14.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6 (June), 343–349.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
27, 5 (December), 126:1–126:11.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO,
B. 2009. RenderAnts: interactive Reyes rendering on GPUs.
ACM Trans. Graph. 28, 5 (December), 155:1–155:11.

A Shading Reuse Method for Efficient Micropolygon Ray Tracing • 151:7

ACM Transactions on Graphics, Vol. 30, No. 6, Article 151, Publication date: December 2011.

