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Figure 1: Real-time facial tracking and animation for different users using a single camera.

Abstract

We present a fully automatic approach to real-time facial tracking
and animation with a single video camera. Our approach does not
need any calibration for each individual user. It learns a generic
regressor from public image datasets, which can be applied to any
user and arbitrary video cameras to infer accurate 2D facial land-
marks as well as the 3D facial shape from 2D video frames. The
inferred 2D landmarks are then used to adapt the camera matrix
and the user identity to better match the facial expressions of the
current user. The regression and adaptation are performed in an al-
ternating manner. With more and more facial expressions observed
in the video, the whole process converges quickly with accurate fa-
cial tracking and animation. In experiments, our approach demon-
strates a level of robustness and accuracy on par with state-of-the-
art techniques that require a time-consuming calibration step for
each individual user, while running at 28 fps on average. We con-
sider our approach to be an attractive solution for wide deployment
in consumer-level applications.
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1 Introduction

With the wide spread of commodity RGBD cameras such as Mi-
crosoft’s Kinect, performance-driven facial animation, a high end
technology in film and game production, is now ready for deploy-
ment in consumer-level applications. State-of-the-art techniques
[Weise et al. 2011; Bouaziz et al. 2013; Li et al. 2013] demonstrate
impressive real-time facial tracking and animation results by reg-
istering a DEM (Dynamic Expression Model) with the depth data
from an RGBD camera.

Video cameras, however, are more widely available on PCs and
mobile devices than RGBD cameras, and video-based facial track-
ing remains a challenging problem. The recent regression-based
algorithm proposed by Cao et al. [2013a] can reach the same level
of robustness and accuracy as demonstrated in RGBD-based algo-
rithms, while requiring only an ordinary web camera. It learns a
3D shape regressor to infer the 3D positions of facial landmarks
from 2D video frames, which are then used to register the DEM.
The regressor and DEM, however, are constructed for each spe-
cific user in a time-consuming calibration step, which greatly hin-
ders its practical adoption in consumer-level applications. The lat-
est calibration-free techniques (e.g., [Saragih et al. 2011a]) often
assume weak perspective camera projection and can provide good
tracking results, but cannot achieve the level of robustness and ac-
curacy demonstrated in [Weise et al. 2011; Cao et al. 2013a].

In this paper, we propose a fully automatic approach to robust and
efficient facial tracking and animation with a single video camera.
Our approach does not need any calibration for each individual user.
It learns a generic regressor from public image datasets, which can
be applied to any user and arbitrary video cameras to infer accurate
2D facial landmarks as well as the 3D facial shape from 2D video
frames, assuming the user identity does not change across frames.
The inferred 2D landmarks are then used to adapt the camera ma-
trix and the user identity to better match the facial expressions of
the current user. The regression and adaptation are performed in an
alternating manner, effectively creating a feedback loop. With more
and more facial expressions observed in the video, the whole pro-
cess converges quickly with accurate facial tracking and animation.

To facilitate the above regression and adaptation processes, we in-
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troduce the DDE (Displaced Dynamic Expression) model as a novel
facial shape representation suitable for video-based facial tracking.
A unique feature of the DDE model is that it simultaneously rep-
resents the 3D geometry of the user’s facial expressions (the final
output of our algorithm), and the 2D facial landmarks which corre-
spond to semantic facial features in video frames. We use the DEM
to represent the 3D geometry because of its demonstrated robust-
ness and efficiency in RGBD-based algorithms. The DEM, which
is initialized for a generic face and not pre-calibrated to match the
3D facial geometry of the current user, cannot be well registered
with the facial features observed in the video. To compensate for
the inaccuracy caused by the DEM, we add a 2D displacement
to the projection of each 3D facial landmark in the image space.
The DDE model, combining the powers of DEM and landmark dis-
placements, is capable of generating accurate 2D facial landmarks
from video frames, which are then used to adapt the DEM and the
camera matrix.

The value of the DDE displacements is beyond improving landmark
accuracy. They allow us to train a 2D+3D regressor that achieves
satisfactory landmark accuracy without specifying the DEM ex-
pression blendshapes (i.e., the user identity) beforehand. Such a de-
sign supports fast online updating of the actual user identity, which
is a fundamental requirement of the adaptation process. The de-
sign also creates another advantage – it allows the same regressor
to be trained using images from different users, without violating
the frame-invariant-identity assumption in video tracking. Previ-
ous DEM based video trackers like [Cao et al. 2013a] require all
training images to be taken from the same user, which practically
limits their training dataset to a few dozen images. The broadened
choice of training images is thus an algorithmically significant con-
sequence of our model design.

Contributions. The main contribution of our work is a calibration-
free approach to performance-driven facial animation with a single
video camera. As shown in the supplementary video, the result-
ing system can be used by any user, without any training. It can
robustly handle fast motions, large head rotations and exaggerated
expressions. Compared with the state-of-the-art video-based track-
ing algorithm [Cao et al. 2013a] which needs a user-specific cali-
bration process, our approach can reach the same level of tracking
accuracy, and is even more robust under large lighting changes due
to the significant lighting variations exhibited in our training im-
ages. Evaluation experiments also show that the 3D facial geometry
tracked by our approach matches the ground truth depth acquired by
an RGBD camera. The system performance is promising – it takes
less than 20 miliseconds to process a video frame, making it very
attractive for consumer-level applications.

We also contribute a new facial shape representation for video-
based tracking, i.e., the DDE model, as well as a regression al-
gorithm designed for the model. Experiments demonstrate that the
DDE model can achieve more robust and accurate tracking than
other alternative representations and algorithms.

The rest of the paper is structured as follows. The following section
reviews related work. In Section 3, we give an overview of our sys-
tem, including the DDE model and the system workflow. Section 4
introduces the regression algorithm for the DDE model. Section 5
describes how to use the DDE regression results to adapt the cam-
era matrix and the DEM. Some important implementation details
are discussed in Section 6. Section 7 presents results and Section 8
concludes the paper with some discussion of future work.

2 Related Work

Facial performance capture and face tracking have a long history
in computer graphics and vision (e.g., [Williams 1990]). In this

section we only review the most relevant references.

Various techniques have been proposed to capture facial expres-
sions of a subject and transfer them to a target model. In film
and game production, special equipment, such as facial markers
[Huang et al. 2011], camera arrays [Bradley et al. 2010; Beeler et al.
2011], and structured light projectors [Zhang et al. 2004; Weise
et al. 2009], can be used to get 3D facial geometry of high fidelity.
These techniques, however, are not suitable for consumer-level ap-
plications, where such special equipment are not available.

As a more practical solution for ordinary users, video-based facial
tracking and animation have attracted much research effort. This
category of techniques first locates semantic facial landmarks such
as eyes, nose and mouth in video frames, and then uses the land-
mark positions to drive facial animation. Early techniques track
each individual landmark by optical flow, which is unreliable under
fast motions. To achieve more robust tracking, a few techniques
have been proposed to incorporate geometric constraints to corre-
late the positions of all landmarks, such as feature displacements in
expression change [Chai et al. 2003], physically-based deformable
mesh models [Essa et al. 1996; DeCarlo and Metaxas 2000], and
data-driven face models [Pighin et al. 1999; Blanz and Vetter 1999;
Vlasic et al. 2005]. The majority of latest tracking techniques use
CPR (Cascaded Pose Regression) [Dollar et al. 2010; Cao et al.
2012; Cao et al. 2013a], CLM (Constrained Local Model) [Saragih
et al. 2011b; Saragih et al. 2011a; Baltrušaitis et al. 2012; Asthana
et al. 2013] or SDM (Supervised Descent Method) [Xiong and
De La Torre 2013] to track facial shapes from 2D images. We use
CPR to regress our DDE model for two reasons. First, our exper-
iments show that the limited local search radius in CLM can be
problematic when handling fast motions. Second, CLM and SDM
methods can only produce raw landmark positions as the output,
which requires considerable additional processing before they can
be applied to avatars [Saragih et al. 2011a].

The recent advent of RGBD cameras has enabled a number of
depth-based facial tracking methods [Weise et al. 2011; Baltrušaitis
et al. 2012; Bouaziz et al. 2013; Li et al. 2013]. In particular, Weise
et al. [2011] construct a user-specific DEM in a preprocessing stage,
and register the DEM with the observed depth data at runtime. This
algorithm achieves real-time performance and shows more robust
and accurate results than previous video-based methods. Bouaziz
et al. [2013] and Li et al. [2013] further propose to combine the
DEM construction with online tracking, and demonstrate impres-
sive tracking and animation results for an arbitrary user, without
any training or calibration.

Realizing the advantages of user-specific models, Cao et al. [2013a]
propose to train a 3D shape regressor for each specific user, and
use it to infer 3D facial shapes from 2D video frames at run-
time. This video-based algorithm generates accurate and robust
tracking results comparable to those created by RGBD-based tech-
niques [Weise et al. 2011]. An improved version of the algorithm
significantly reduces the computational cost by directly regressing
the head poses and expression coefficients, but still requires a train-
ing process [Weng et al. 2013]. The training, however, needs to
collect a set images of each specific user with predefined facial
poses and expressions and then label them. This tedious and time-
consuming process hinders the wide adoption of the technique in
consumer-level applications. Our goal in this paper is to develop
a video-based approach that does not need any calibration while
keeping the same level of robustness, accuracy and efficiency as in
[Weise et al. 2011; Cao et al. 2013a]. Unlike in RGBD-based track-
ing where the observed depth map can be used as the ground truth
geometry to guide the online training and tracking, our problem is
more challenging as we only have 2D video frames as input.
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Figure 2: The workflow of our approach.

Various parametric shape models have been used to represent
human faces, such as PCA models in ASM (Active Shape
Model) [Cootes et al. 1995] and AAM (Active Appearance
Model) [Cootes et al. 1998], multi-linear models [Vlasic et al. 2005]
and blendshapes [Pighin et al. 1998; Lewis and Anjyo 2010]. Two
or more parametric models can be used together in actual algo-
rithms. For example, Xiao et al. [2004] introduced a 2D+3D al-
gorithm for real-time facial tracking. They use a 3D PCA model
for the 3D facial shape and fit its parameters using a 2D AAM on
the projected shape. Our DDE model is a new facial shape repre-
sentation that combines a 3D parametric model and 2D landmark
displacements. It outperforms alternative representations in terms
of tracking robustness and accuracy in our experiments.

3 Approach Overview

In this section, we first describe the DDE model, and then briefly
overview the workflow of the tracking process.

3.1 The DDE Model

The DDE model is designed to simultaneously represent the 3D
shape of the user’s facial expressions and the 2D facial landmarks
which correspond to semantic facial features in video frames. For
the 3D shape, we use a DEM based on a set of blendshape meshes.
Similar to [Weise et al. 2011], we represent the 3D facial mesh F as
a linear combination of expression blendshapes B = [b0, ...,bn]
plus a rotation R and a translation t:

F = R
(
BeT

)
+ t, (1)

where e = [e0, ..., en] is the expression coefficients. As commonly
assumed in blendshape models, b0 is the neutral face, and non-
neutral blend weights ei, 1 ≤ i ≤ n are bounded between 0 and
1. All blend weights must sum to 1, leading to e0 = 1−

∑n
i=1 ei.

For simplicity of description, we ignore the dependent e0 in the fol-
lowing equations and discussions, and assume the correct value is
computed on demand. The rotation R is represented as a quater-
nion in our algorithm.

Our blendshape model is based on the FACS (Facial Action Coding
System) [Ekman and Friesen 1978], which contains 46 action units
(i.e., n = 46) that mimic the combined activation effects of facial
muscle groups. This blendshape model adequately describes most
expressions of the human face. As in [Cao et al. 2013a], we make
use of FaceWarehouse [Cao et al. 2013b], a 3D facial expression
database containing the data of 150 individuals from various ethnic
backgrounds, to construct the blendshape meshes. Specifically, the
expression blendshapes B of a certain user is constructed as:

B = C ×2 uT , (2)

where u is the user identity vector, and C is the rank-3 core tensor
from the database, of which the three modes are face mesh, identity
and expression, respectively.

To represent the 2D facial landmarks {sk}, we add a 2D displace-
ment {dk} to the projection of each landmark’s corresponding ver-
tex F (vk) on the facial mesh:

sk = ΠQ

(
F (vk)

)
+ dk, (3)

where ΠQ is a perspective projection operator, parameterized by
a projection matrix Q. The 2D facial shape S is thus represented
by the set of all 2D landmarks {sk}. The displacement vector is
denoted as D = {dk}.

Following [Cao et al. 2013a], we assume an ideal pinhole camera,
with the projection matrix represented as

Q =

 f 0 p0

0 f q0

0 0 1

 , (4)

where f is the focal length and (p0, q0) is at the image center, mak-
ing f the only unknown variable.

Note that for landmarks on the face contour, the vertex indices
vk may vary across frames and have to be recomputed when F
changes. The index updating procedure is detailed in Section 6.

Combining the 3D part and the 2D part, our DDE model can be
written as a function mapping unknown variables to a 2D facial
shape:

DDE(Q,u; e,R, t,D) = S. (5)

Among the unknowns, the projection matrix Q and the identity co-
efficients u need to be treated in a special way as their ground truth
values should be invariant across all frames for the same user and
the same video camera during tracking. This fact is reflected by the
semi-colon in Eq. (5). The remaining per-frame unknowns will be
referred to collectively as the shape vector P = (e,R, t,D).

3.2 Tracking Workflow

Our tracking workflow is illustrated in Fig. 2. The input video frame
I is first sent into a CPR regressor [Cao et al. 2012], formulated as
a function mapping a guessed shape vector Pin to a regressed shape
vector Pout:

CPR(I,Q,u;Pin) = Pout, (6)

where Q,u are known for the current frame. The regressor out-
put is then post-processed to improve the temporal coherence
and clamp expression coefficients within valid ranges. The post-
processed output is optionally sent to an iterative optimization pro-
cedure to update the camera matrix and the identity if the current



frame is identified to contain representative facial motions. The
optimized projection matrix and identity are sent back to the CPR
regressor in a feedback loop. Finally, the post-processed output, in-
cluding the rotation, translation and expression coefficients, can be
directly transferred to a digital avatar to drive its facial animation.

As indicated by Eq. (6), the regressor only computes the facial mo-
tion, i.e., the expression, rigid transformation and displacements.
The frame-invariant parameters Q and u are a part of the regressor
input, as opposed to the output.

4 DDE Regression

In the following we first explain how to learn the DDE regressor
indicated in Eq. (6) from a set of training images, and how to use
it for runtime tracking. We then describe the postprocessing of the
regression output.

4.1 Training

Training data preparation. Our training algorithm takes a set of
facial images from public datasets as input. For each input im-
age I , 73 2D landmarks are manually labeled to produce the 2D
facial shape S = {sk}. From the landmarks, we fit all the un-
knowns (Q,u;P) by minimizing the total displacements Eim =∑

k ‖dk‖
2, under the constraint DDE(Q,u;P) = S. Images

of the same person are manually identified and the corresponding
shape vectors are optimized jointly with the same identity coeffi-
cients u.

The above optimization process is similar to the 3D facial shape re-
covery and camera calibration steps described in [Cao et al. 2013a],
with the exception that we need to recover the 2D landmark dis-
placements in addition to the 3D shape. Given a value of the focal
length f (and the corresponding Q), we use the coordinate-descent
method to solve the identity u and the shape vector P, by alter-
nately optimizing each parameter while fixing the others in each
iteration. Different values of f result in different fitting errors of
Eim. We thus use the binary search scheme to find the optimal
focal length f that leads to the minimal Eim.

Training pair construction. The CPR training method requires
creating guess-truth pairs for each image Ii, in order to relate
parameter differences to image features. We use the notation
(Ii,Qij ,uij ;Pij ,P

g
ij) to denote such pairs, where Pij is the

guessed shape vector, Pg
ij is the ground truth shape vector and j

represents the indices of the guess-truth pairs for the image Ii.

For each input image Ii and the corresponding fitted ground truth
(Qg

i ,u
g
i ;Pg

i ), where Pg
i = (eg

i ,R
g
i , t

g
i ,D

g
i ), we generate several

classes of training pairs by perturbing individual parameters. In
each training pair, we also set the guessed displacement vector with
Dr

ij , taken from a random image.

• Random rotation. Add a random rotation ∆Rij , yielding
Pij = (eg

i ,R
g
i + ∆Rij , t

g
i ,D

r
ij), Pg

ij = Pg
i ;

• Random translation. Add a random translation ∆tij , yield-
ing Pij = (eg

i ,R
g
i , t

g
i + ∆tij ,D

r
ij), Pg

ij = Pg
i ;

• Random expression. Choose a random image Ii′ , assign its
expression coefficients eij = eg

i′ to the current image, yield-
ing Pij = (eij ,R

g
i , t

g
i ,D

r
ij), Pg

ij = Pg
i ;

• Random identity. Choose a random image Ii′ , assign its fit-
ted identity coefficients to the current training pair, yielding
uij = ug

i′ , Pij = (eg
i ,R

g
i , t

g
i ,D

r
ij). Since the identity co-

efficients are input parameters and cannot be changed during

(a) (b) (c)

Figure 3: Random identity example. For image (a), we use the
identity from (b) but keep the original displacements, resulting in
inaccurate 2D landmark positions. Therefore we need to recompute
the displacements to get the correct landmarks (c).

regression, the ground truth shape vector must be updated ac-
cordingly to Pg

ij = (eg
i ,R

g
i , t

g
i ,D

g
ij), where the landmark

displacements Dg
ij are recomputed to match the ground truth

landmarks under the changed identity;

• Random camera. Add a random offset to the focal length
in the camera matrix Qg

i , yielding Qij = Qg
i + ∆Q,

Pij = (eg
i ,R

g
i , t

g
i ,D

r
ij). Similar to the identity case, the

ground truth shape vector must be updated accordingly to
Pg

ij = (eg
i ,R

g
i , t

g
i ,D

g
ij), where the landmark displacements

Dg
ij are recomputed to match the ground truth landmarks un-

der the changed camera.

Our identity and camera perturbation is a significant divergence
from conventional CPR methods, as the ground truth shape vec-
tor is perturbed alongside the guessed shape vector to avoid intro-
ducing a change in non-regressed input parameters (i.e., Q and u).
Such training pairs simulate cases where these input parameters are
initially inaccurate, in which the regressor is expected to produce
large displacements to get the correct landmark positions. Fig. 3 il-
lustrates such a training pair. In Fig. 3(a), the identity in the ground
truth shape vector is replaced with that of a different person (shown
in Fig. 3(b)), which introduces significant changes in the landmark
positions. In Fig. 3(c), the displacements Dg

ij are recomputed to
move the landmarks back to the correct locations. The CPR regres-
sor is trained to be able to reproduce such displacements at runtime.

We generate 5 training pairs for each class except the random ex-
pression class, for which we generate 15 pairs to better capture the
rich variety of expressions. Another detail is that for each train-
ing pair, the landmark vertex indices vk in Eq. (3) remain the same
throughout the training process. The reason is that the training pair
models facial shape changes within a single frame, within which
contour vertex indices are not updated. The vk values used in the
training are computed according to the guessed shape vector Pij .

Training. Once the training pairs are constructed, we learn a re-
gression function from Pij to Pg

ij based on intensity information
in the image Ii. We follow the two-level boosted regression ap-
proach proposed by Cao et al. [2012], and use 15 stages for the first
level and 300 stages for the second level. The approach combines a
set of weak regressors in an additive manner. Each weak regressor
computes a shape increment from image features and updates the
current shape vector. At a high level, the training process exploits
the correlation between the error Pg

ij − Pij and appearance vec-
tors extracted from the image Ii, which minimizes the following
energy:

Etr =
∑
i,j

∥∥Pg
ij −Pij

∥∥2
. (7)

We only make a minor change to the appearance vector extraction



step, which will be described in Section 6. Please refer to [Cao
et al. 2012] or [Cao et al. 2013a] for more details about the training
algorithm.

4.2 Runtime Regression

Our runtime regression resembles the runtime procedure in [Cao
et al. 2013a]. Specifically, for the t-th input video frame It and the
current estimation of Q and u, we compute a set of guessed shape
vectors {Pt−1

j }. For each Pt−1
j , the regressor produces an updated

shape vector Pt
j = CPR(It,Q,u;Pt−1

j ). Finally, we average all
output vectors {Pt

j} to obtain the average shape vector P̄t.

The guessed shape vectors {Pt−1
j } are computed from the shape

vector computed in the previous frame, P̂t−1. Following [Cao
et al. 2013a], we first find Pnear , the nearest shape vector to P̂t−1

among the training shape vectors {Pt
i}. Here the distance be-

tween two shape vectors is defined by first aligning the centroids
of their projected 2D shapes, and then computing the total RMS
(Root Mean Square) distance between all corresponding landmark
points. We then replace the rotation quaternion in P̂t−1 with the
one in Pnear , and compute for the resulting shape vector its K
nearest vectors among the training shape vectors as {Pt−1

j }.

For the first frame t = 1, no previous-frame shape vector is avail-
able and we have to compute P̂t−1 = P̂0 from scratch. Specif-
ically, we detect the face location using a real-time face detector
[Viola and Jones 2004], use a 2D CPR method [Cao et al. 2012] to
compute a 2D facial shape, and then fit a shape vector from this 2D
shape using the same method as in Section 4.1.

For more details about the runtime regression algorithm, please re-
fer to [Cao et al. 2013a].

Discussion. Although it is possible to simply regress Q and u along
with other parameters, we leave them out of the regression and up-
date them in the DEM adaptation step. The reasons are two-fold.
First, the ground truth parameters of the camera matrix and iden-
tity are invariant across video frames (for the same camera and the
same user). It is therefore unnecessary to compute these parameters
per frame. Second, the identity and camera matrix estimated from
a single frame are significantly less accurate than those computed
from multiple representative frames in a joint optimization. Fac-
toring Q and u out of the regressor would produce more accurate
results in the long run, once the joint optimization converges.

4.3 Post-processing

Prior to post-processing, we compute a projected 2D shape St from
the regressed shape vector P̄t. St is regarded as the ground truth
2D shape of the current frame in all subsequent computations.

The regression output P̄t does not take temporal coherence into
account, nor does it enforce valid parameter ranges. This may pose
problems even if the landmark positions are accurate. For example,
the expression coefficients could lie outside the range of [0, 1]. The
displacements could become too large due to inaccurate estimations
of the identity or the camera matrix, undermining the significance
of the regressed facial motion. As a remedy, we use an additional
optimization procedure to post-process the regression output.

The post-processing step computes the final output shape vector
P̂t by minimizing a weighted combination of three energy terms,
including a fitting error term Efit, a regularization term Ereg, and a

temporal coherence term Etm:

Efit =
∑m

k=1

∥∥∥∥ΠQ

(
R̂t
(
BêtT

)
+ t̂t

)(vt
k)

− stk

∥∥∥∥2

,

Ereg =
∥∥∥P̂t − P̄t

∥∥∥2

,

Etm =
∥∥∥P̂t−2 − 2P̂t−1 + P̂t

∥∥∥2

.

Ereg helps to make the tracking result more expressive, while Etm

is designed to make the animation more stable and smooth.

The final combined energy is:

Etot = Efit + ωregEreg + ωtmEtm, (8)

where ωreg and ωtm are the non-negative weights for the respec-
tive terms. Etot is minimized using an off-the-shelf BFGS opti-
mizer [Byrd et al. 1995]. We set ωreg = 5 and ωtm = 1 in our cur-
rent implementation, which can provide good tracking results. The
expression coefficients êt are constrained within the range [0, 1].

5 DEM Adaptation

The DEM adaptation step takes as input the regressed 2D shape
St and the post-processed shape vector P̂t to optimize the frame-
invariant parameters Q and u, i.e., the camera projection matrix
and the user identity. After u is updated, the expression blendshape
matrix B is regenerated according to Eq. (2).

Initialization. When a new user enters the camera’s field of view,
we initialize Q and u to average values. The identity vector u is
initialized to the average identity in FaceWarehouse. For the camera
matrix, we first compute the initial 2D facial shape as described in
Section 4.2. We then use the binary search scheme described in
[Cao et al. 2013a] to compute an initial focal length f , from which
we construct the initial camera matrix Q.

5.1 Representative Frame Selection

We use a joint optimization across multiple frames to update Q and
u. As it is computationally expensive and unnecessary to use all
input frames in this optimization, we need a way to select represen-
tative frames to obtain maximal accuracy within a fixed computa-
tional budget.

We perform the frame selection by incrementally appending to a
representative frame set {(Sl, P̂l)}. The initial L frames are al-
ways added to the set. After that, we only append a frame to the set
if its expression coefficients and rigid rotation parameters are suffi-
ciently distant from the linear space formed by existing frames.

Specifically, we first define for each frame an expression-rotation
vector Vl =

(
Rl, el

)
. We perform a mean-removed PCA (Princi-

pal Component Analysis) dimension reduction on all Vl vectors in
the current frame set, yielding a mean vector V̄ and an eigenvector
matrix M. The PCA discards the last 5% eigenvectors in terms of
energy. For each incoming frame with vector Vt, we compute its
PCA reconstruction error:

Erec =
∥∥∥Vt −

(
V̄ + MMT (Vt − V̄

))∥∥∥2

. (9)

We only accept the new frame if Erec is larger than a threshold (0.1
in our experiments). Accepted frames are appended to the frame
set and the PCA space is updated accordingly.



5.2 Optimization

We start the optimization when a new representative frame is identi-
fied. We first optimize the identity vector u, then the camera matrix
Q, and finally we re-fit shape vectors for all frames in the represen-
tative frame set under the updated identity and camera matrix.

The optimization of the identity coefficients u is similar to the fit-
ting process in training data preparation (Section 4.1). We fix the
camera matrix Q and the shape vectors {P̂l} of all representative
frames, and minimize the total displacements E =

∑
l,k ‖d

l
k‖2 in

these frames, under the constraint DDE(Q,u; P̂l) = Sl.

When optimizing the camera matrix, we fix the identity u and the
shape vectors {P̂l}, generate the 3D mesh F l for each frame ac-
cording to Eq. (1), and optimize the following energy:

Eim =
∑
l,k

∥∥∥ΠQF l,(vk) − slk

∥∥∥2

. (10)

Substituting Eq. (4) into Eq. (10) yields:

Eim =
∑
l,k

∥∥∥∥xl
k

zlk
f + p0 − plk

∥∥∥∥2

+

∥∥∥∥yl
k

zlk
f + q0 − qlk

∥∥∥∥2

, (11)

where slk = (plk, q
l
k) are the 2D coordinates of landmark slk,

F l,(vk) = (xl
k, y

l
k, z

l
k)T are the 3D coordinates of the correspond-

ing vertex on mesh F . Since Eq. (11) is a least squares problem,
we simply compute f analytically.

Note that we solve for Q and u only once in each DEM adaptation
step. Due to the limited computational budget, we cannot optimize
them in an alternating manner or use the binary search scheme to
compute the optimal focal length f .

After updating Q and u, the existing shape vectors P̂l no longer
match the ground truth 2D shapes Sl and have to be updated. We
use the same method as in training data preparation (Section 4.1)
to re-fit P̂l from Sl. The PCA space for frame selection is updated
accordingly.

As new representative frames can always occur throughout the
video, the DEM adaptation step may be executed anytime. In our
experiments, we found that with more facial expressions and head
poses observed, the number of frames in the representative frame
set becomes stable. Note that the adaptation result may become
less accurate if a newly added representative frame contains some
inaccurate landmarks, and we do not have a good way to handle
such contaminations. Fortunately, this situation rarely happens in
practice. The natural response of a new user is to check his/her own
“reflection” in the camera preview. This creates a few seconds of
adjustment period with near-frontal facial motions, which are ide-
ally suited for our CPR regressor. The resulting 2D landmarks are
highly accurate and allow the adaptation to reach near-convergence
before the adjustment period ends. Typically, the optimization con-
verges quickly in less than 20 seconds, with fewer than 50 repre-
sentative frames appended.

6 Implementation Details

Vertex index update. When reconstructing the 2D facial shape
from our shape vector, we need to compute for each 2D landmark
its corresponding vertex index vk on the 3D mesh. For the inter-
nal landmarks (e.g., eyes and nose), the indices are pre-defined and
fixed. However, for landmarks along the face contour, we need to

(a) (b) (c)

Figure 4: Vertex index update for landmarks along the face con-
tour. We organize the mesh vertices into a series of horizontal lines
in (a), and choose a vertex for each line to construct the silhouette
curve (b), which is then projected to the image plane and uniformly
sampled to locate the corresponding vertex indices (c).

compute the mesh’s silhouette under the current camera projection
and sample the silhouette to get the correct indices.

The main challenge is that we need to compute the silhouette as a
single connected curve for the landmark sampling. To avoid costly
connectivity computation, we organize the mesh vertices into a se-
ries of horizontal lines as shown in Fig. 4(a). Note that we have al-
ready discarded the vertices that cannot be part of the silhouette in
any possible head poses that are supported in our tracking system.
During the on-the-fly silhouette extraction, we choose the vertex
with the smallest |N · V | from each horizontal line, and connect
the chosen vertices vertically to construct the silhouette curve as
shown in Fig. 4(b). Here N is the vertex normal and V is the view
direction. The silhouette curve is then projected to the image plane
and uniformly sampled at predefined intervals to get the 2D land-
mark and their corresponding vertex indices on the mesh as shown
in Fig. 4(c).

Appearance vector extraction. The regression algorithm needs to
extract appearance vectors from images, which are composed of the
image intensities at a set of randomly selected points (called feature
points). These appearance vectors are used to represent the images
during the training and runtime processes. Cao et al. [2012] define
a feature point as a landmark position plus an image space offset.
This approach, however, cannot robustly handle large rotations in
our scenario. The 3D feature points used by the 3D shape regres-
sor in [Cao et al. 2013a] can effectively handle large rotations, but
cannot be directly used in our case as our shape representation is a
combination of a 3D shape and 2D dispacements. Burgos-Artizzu
et al. [2013] propose to represent a feature point as a linear combi-
nation of two 2D landmarks. This approach can also handle large
rotations, but restricts feature points to lie on the line segments con-
necting two landmarks.

We define the position of a feature point as the barycentric coordi-
nates in a triangle formed by 2D landmarks. We first generate a set
of feature points (400 points in our current implementation by sam-
pling a Gaussian distribution on the unit square. For each point, we
find a triangle in a reference 2D facial shape whose center is clos-
est to the point, and compute the point’s barycentric coordinates in
the triangle. During appearance vector extraction, this point will be
located according to the triangle positions and the barycentric coor-
dinates. We call such feature points triangle-indexed features. The
reference 2D facial shape is computed by averaging the 2D shapes
of all training images. The triangles are created as the Delaunay
triangulation of all landmarks.

Face tensor preparation. The original FaceWarehouse database
uses n-mode SVD to compress both the identity mode and the ex-
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Figure 5: Shape representation comparison. In (a) from left to
right respectively: raw 2D landmarks. the parametric model. raw
3D landmarks, our DDE model.

pression mode. As the coefficient range enforcement in Section 4.3
requires the expression weights to be within [0, 1], we cannot use
their compressed tensor directly. Instead, we re-compress their
original data tensor using a simple matrix SVD along the identity
mode, leaving the expression mode uncompressed. Specifically, the
SVD “rotates” the original tensor and sorts its variance in decreas-
ing order for the identity mode. We then truncate the insignificant
components of the rotated tensor and get the reduced tensor C. We
found that keeping 75 knobs for the identity provides satisfactory
results in our experiments.

7 Experimental Results

We have implemented the described appproach in native C++ with
OpenMP parallelization. The test system runs on a quad-core Intel
Core i5 (3.0GHz) CPU, with an ordinary web camera producing
640 × 480 video frames at a maximum of 30 fps. The regressor
training takes about 6 hours. For each video frame, our approach
takes about 12ms to regress the shape vector and 3ms to post-
process the regression result. Before the frame-invariant parameters
(i.e., the camera matrix and the identity) converge, we also need an
additional 5ms to execute the DEM adaptation. Our end-to-end
frame rate is about 28 fps on average, bounded by the camera.

Our training images are from three public image datasets: Face-
Warehouse [Cao et al. 2013b], LFW [Huang et al. 2007] and GTAV
[Tarres and Rama ]. Excluding the images that are too blurry to la-
bel, we collected 14, 460 images in total, each of which is manually

(a) (b) (c)

Figure 6: For an input frame (a), the raw output from the regressor
generates a physically implausible mesh (b). The post-processing
improves the result by restricting the expression coefficients to the
valid range as in (c).

labeled. Table 1 shows the relevant statistics. All theses training im-
ages with labeled landmarks can be downloaded from our website1.

Database FW LFW GTAV
Individuals 150 3,010 44
Labeled images 5,904 7,258 1,298

Table 1: Training data statistics.

7.1 Algorithm Validation

The supplementary video provides a live demonstration of our sys-
tem. As seen, any user can instantly be tracked once he (or she)
enters the camera’s field of view, without any calibration. The user
switch does not cause any noticeable lag. The tracking results are
accurate in terms of the 2D landmarks from the beginning, and the
3D shape quickly converges to match the user’s facial geometry.
The tracked head motions and expressions can be transferred to a
digital avatar, producing convincing facial animation in real time.
Note that none of the performers appeared in the video and paper
was included in our training dataset.

In the following, we evaluate the main components in our ap-
proach. Comparisons with other algorithms are given in the next
sub-section.

The DDE model. We compare our DDE model with three alterna-
tives: raw 2D landmarks [Cao et al. 2012], the parametric model
that does not incorporate the 2D displacements [Weng et al. 2013],
and raw 3D landmarks [Cao et al. 2013a]. We use the same training
process and datasets to train a regressor for each formulation. The
resulting regressors are tested on the same video sequence. The
ground truth landmark positions are manually labeled. Fig. 5(a)
compares the tracking results generated by the four representations.

As shown, relying completely on raw 2D landmarks without any 3D
constraints can generate implausible 2D shapes. While the paramet-
ric model is able to maintain a consistently plausible result, with-
out displacements the tracked 2D landmarks cannot be accurately
aligned with corresponding image features. Using raw 3D land-
marks can improve the alignment. However, without a fixed iden-
tity constraint, the landmark depths cannot be accurately inferred,
making the tracking results unstable. Fig. 5(b) shows a quantitative
comparison of the tracking errors. As illustrated, our DDE model
outperforms all the other representation by a fair margin.

We also study the effectiveness of the large number of images in
training the DDE regressor. We learn three DDE regressors based
randomly sampled image subsets, and then test them on the se-
quence shown in Fig. 5. The average errors (in pixels) for different
image subsets are: 2.9 (4750 images), 2.2 (9540 images), and 1.5

1http://gaps-zju.org/DDE
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Figure 8: DEM adaptation for three different users. The vertical
spike in 2D displacements indicates that a new user has entered
the camera’s field of view. The 2D displacements decrease signifi-
cantly as the frame-invariant parameters are updated, and quickly
converge in several seconds.

(all images). With more training images used, the regressor can
provide more accurate tracking results. Note that the training set
size does not have a significantly effect on the regressor size or the
runtime processing speed.

Post-processing. In Fig. 6(a), we show the effects of our post-
processing on the regression output. For an input frame shown in
Fig. 6(a), the raw regressor output may produce out-of-bounds ex-
pression coefficients, as illustrated by the physically implausible
mesh in Fig. 6(b). As discussed in Section 4.3, the post-processing
step constrains the expression coefficients within the valid range,
yielding a better result as shown in Fig. 6(c).
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Figure 9: Comparisons with the user-specific algorithm [Cao et al.
2013a] and 3D CLM [Saragih et al. 2011a]. Our approach (right
column) can generate accurate tracking results comparable to the
user specific algorithm (left column), which needs 60 pre-captured
facial images of the user to train a user-specific regressor. The
3D CLM (middle column) produces inaccurate results under large
rotations. Note that the error computation in (a) is restricted to the
internal landmarks shared by all three implementations, with the
face contour excluded.

7.2 Comparisons

DEM adaptation. In Fig. 7, we show the effects of the DEM adap-
tation. Starting from a deliberately inaccurate initialization of the
camera matrix Q and the identity u, our approach updates Q and
u on the fly, and converges in approximately 400 frames. Fig. 7(b)
and (c) illustrate the convergence trend of identity and focal length.
As illustrated, both converge rapidly to near the respective final val-
ues within a few video frames. Note that to get the ground truth val-
ues of the identity and focal length, we took 60 images of the sub-
ject under a set of pre-defined pose and expression configurations,
and used Cao et al. [2013a]’s approach to compute the identity and
focal length.

We also validate the effectiveness of the adaptation by plotting the
total displacement magnitude with respect to frame numbers. As
illustrated in Fig. 8, the 2D displacements decrease significantly as
Q and u become more accurate. The displacements, however, still
exist even after Q and u converge to stable values. This is caused
by the limited expressive power of the FaceWarehouse database and



Figure 10: Our approach (bottom row) is more robust than the
user-specific algorithm [Cao et al. 2013a] (top row) under signifi-
cant lighting changes.

the blendshape model we used for 3D facial shapes. This fact, from
the other side, supports our use of 2D displacements in the DDE
model.

We compare our approach with two state-of-the-art techniques, the
user-specific regression algorithm [Cao et al. 2013a] and the 3D
CLM approach described in [Saragih et al. 2011a]. As in the pre-
vious section, we run all methods on a manually labeled video se-
quence and compare the computed 2D landmarks with the ground
truth. For [Cao et al. 2013a], a user-specific regressor is trained
using 60 images taken of the same subject immediately before the
test video is recorded. The CLM model is trained using the same
training images as in our approach. Our training data is substan-
tially larger than the data used in the authors’ implementation and
the resulting model generates more accurate results.

Fig. 9 compares the tracking results of the three methods. As
shown, the tracking accuracy of our approach is comparable to that
of the user-specific method, while the 3D CLM approach produces
inaccurate results for large rotations. Such inaccuracy is especially
pronounced around the face contour, where local features are hard
to distinguish. Note that the landmarks corresponding to the face
contour significantly affect the fitting results of the identity and ex-
pressions. It is thus important to accurately locate their positions.

Fig. 10 compares our method with [Cao et al. 2013a] in handling
lighting changes. If the current lighting is significantly different
from that in the training images, the user-specific method may fail
to get good tracking results (Fig. 10(a)). Based on a generic re-
gressor trained from a large number of images taken under different
lighting environments, our approach demonstrates better robustness
under lighting changes (Fig. 10(b)).

Following [Cao et al. 2013a], we use the depth acquired from a
Kinect camera to validate the accuracy of our approach. Specifi-
cally, we take an RGBD video from the Kinect camera and apply
our approach to the color channels without using any depth infor-
mation. We then reconstruct the 3D facial mesh F for each frame
and compare the reconstructed depth values with the ground truth
at a few representative vertices. As shown in Fig. 11, although the
initial inaccurate identity and camera matrix created a noticeable
difference between our reconstructed mesh and the acquired depth,
the difference decreases to an insignificant level once the frame-
invariant parameters converge through our DEM adaptation.

8 Conclusion

We have introduced a calibration-free approach to real-time facial
tracking and animation with a single video camera. It works by
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Figure 11: Comparison of the depth of our 3D regression with the
ground truth depth from Kinect. Here we use a vertex at the nose
tip. Other vertices have similar curves.

alternately performing a regression step to infer accurate 2D facial
landmarks as well as the 3D facial shape from 2D video frames,
and an adaptation step to correct the estimated camera matrix and
the user identity (i.e., the expression blendshapes) for the current
user. Our approach can achieve the same level of robustness, accu-
racy and efficiency as demonstrated in state-of-the-art tracking al-
gorithms. We also contributed the DDE model, a new facial shape
representation with the the combined advantages of 3D DEM and
2D landmarks. We consider our approach to be an attractive solu-
tion for wide deployment in consumer-level applications.

As a video based technique, our approach will fail to track the
face if many of the facial features cannot be observed in the video
frames. As shown in Fig. 12, our approach can handle some partial
occlusions, but may fail if the face is largely occluded. Moreover,
prolonged landmark occlusions during the DEM adaptation period
may negatively impact the overall accuracy.

Figure 12: Our approach can handle some partial occlusions, but
may fail if the face is largely occluded.

The 3D facial mesh reconstructed by our approach is optimized to
match a set of facial features and does not contain high-frequency
geometric details. If such details are required, one could extract
them by sending our tracking result to an off-line shape-from-
shading technique like [Garrido et al. 2013].

In the future, it would be interesting to see whether the DDE
model can be applied to other problems, e.g., face recognition. The
calibration-free nature of our approach can also facilitate multi-user
scenarios, which user-specific approaches cannot handle. Finally,
we plan to investigate how well our method could perform on mo-
bile devices, where we would face additional challenges such as
low image quality and a low computational budget.
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Robust face landmark estimation under occlusion. In Proceed-
ings of ICCV, 117–124.

BYRD, R. H., LU, P., NOCEDAL, J., AND ZHU, C. 1995. A
limited memory algorithm for bound constrained optimization.
SIAM J. Sci. Comput. 16, 5 (Sept.), 1190–1208.

CAO, X., WEI, Y., WEN, F., AND SUN, J. 2012. Face alignment
by explicit shape regression. Proceedings of IEEE CVPR, 2887–
2894.

CAO, C., WENG, Y., LIN, S., AND ZHOU, K. 2013. 3d shape
regression for real-time facial animation. ACM Trans. Graph.
32, 4 (July), 41:1–41:10.

CAO, C., WENG, Y., ZHOU, S., TONG, Y., AND ZHOU, K. 2013.
Facewarehouse: a 3D facial expression database for visual com-
puting. IEEE TVCG, PrePrints.

CHAI, J.-X., XIAO, J., AND HODGINS, J. 2003. Vision-based
control of 3d facial animation. In Symp. Comp. Anim., 193–206.

COOTES, T. F., TAYLOR, C. J., COOPER, D. H., AND GRAHAM,
J. 1995. Active shape models - their training and application.
Computer Vision and Image Understanding 61, 38–59.

COOTES, T. F., EDWARDS, G. J., AND TAYLOR, C. J. 1998.
Active appearance models. In Proceedings of ECCV, 484–498.

DECARLO, D., AND METAXAS, D. 2000. Optical flow constraints
on deformable models with applications to face tracking. Int.
Journal of Computer Vision 38, 2, 99–127.

DOLLAR, P., WELINDER, P., AND PERONA, P. 2010. Cascaded
pose regression. In Proceedings of IEEE CVPR, 1078–1085.

EKMAN, P., AND FRIESEN, W. 1978. Facial Action Coding Sys-
tem: A Technique for the Measurement of Facial Movement.
Consulting Psychologists Press.

ESSA, I., BASU, S., DARRELL, T., AND PENTLAND, A. 1996.
Modeling, tracking and interactive animation of faces and heads:
using input from video. In Computer Animation, 68–79.

GARRIDO, P., VALGAERT, L., WU, C., AND THEOBALT, C.
2013. Reconstructing detailed dynamic face geometry from
monocular video. ACM Trans. Graph. 32, 6 (Nov.), 158:1–
158:10.

HUANG, G. B., RAMESH, M., BERG, T., AND LEARNED-
MILLER, E. 2007. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Tech.
Rep. 07-49, University of Massachusetts, Amherst, October.

HUANG, H., CHAI, J., TONG, X., AND WU, H.-T. 2011. Lever-
aging motion capture and 3d scanning for high-fidelity facial per-
formance acquisition. ACM Trans. Graph. 30, 4, 74:1–74:10.

LEWIS, J. P., AND ANJYO, K. 2010. Direct manipulation blend-
shapes. IEEE CG&A 30, 4, 42–50.

LI, H., YU, J., YE, Y., AND BREGLER, C. 2013. Realtime facial
animation with on-the-fly correctives. ACM Trans. Graph. 32, 4
(July), 42:1–42:10.

PIGHIN, F., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND
SALESIN, D. H. 1998. Synthesizing realistic facial expressions
from photographs. In Proceedings of SIGGRAPH, 75–84.

PIGHIN, F., SZELISKI, R., AND SALESIN, D. 1999. Resynthe-
sizing facial animation through 3d model-based tracking. In Int.
Conf. Computer Vision, 143–150.

SARAGIH, J. M., LUCEY, S., AND COHN, J. F. 2011. Real-time
avatar animation from a single image. In IEEE International
Conference on Automatic Face Gesture Recognition and Work-
shops, 117–124.

SARAGIH, J., LUCEY, S., AND COHN, J. 2011. Deformable model
fitting by regularized landmark mean-shift. International Jour-
nal of Computer Vision 91, 2, 200–215.

TARRES, F., AND RAMA, A. GTAV Face Database.
Ahttp://gps-tsc.upc.es/GTAV/ResearchAreas/
UPCFaceDatabase/GTAVFaceDatabase.htm.

VIOLA, P., AND JONES, M. 2004. Robust real-time face detection.
International Journal of Computer Vision 57, 2, 137–154.

VLASIC, D., BRAND, M., PFISTER, H., AND POPOVIĆ, J. 2005.
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